

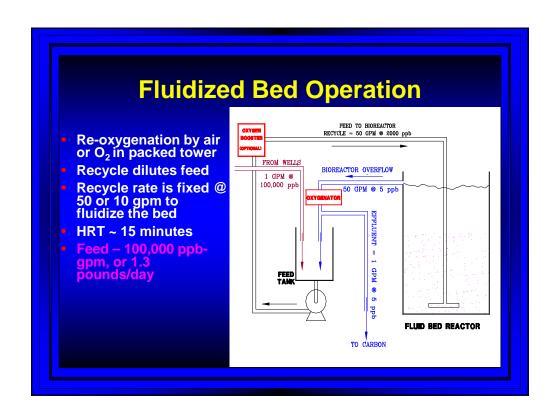
Fluidized Bed Bioreactor

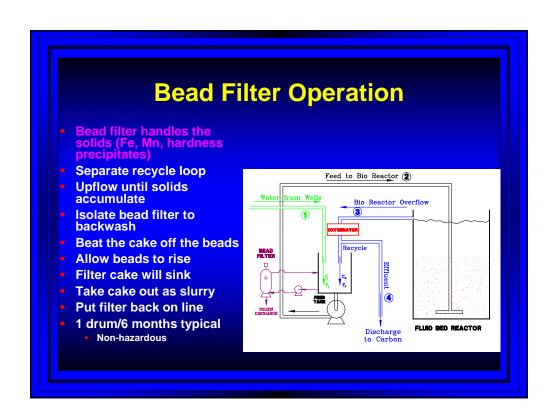
- Microorganisms attached to particles degrade contaminants in a water stream
- Ex-situ treatment applicable to GW pump-andtreat operations
- Particles are distributed in the bioreactor by an upflow of the water being treated
- Used in a variety of other applications including wastewater treatment and industrial waste treatment

Oxygen Demand

O₂ is required for biodegradation

Ratio O_2 :Contaminants = 3:1

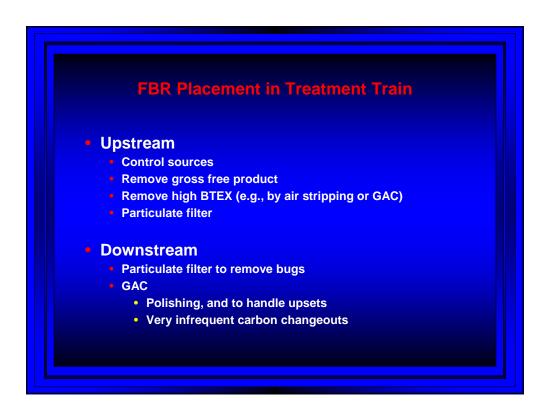

 O_2 solubility in water = 9 ppm (eq. with air)

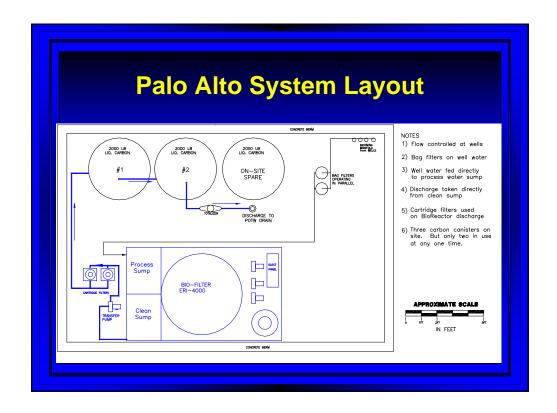

6 ppm O₂ usable - so -

Contaminant bio. limited to 2 ppm in FBR tank unless O₂ is added

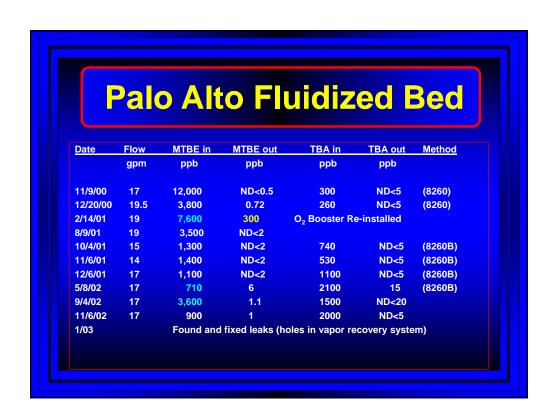
HISTORY

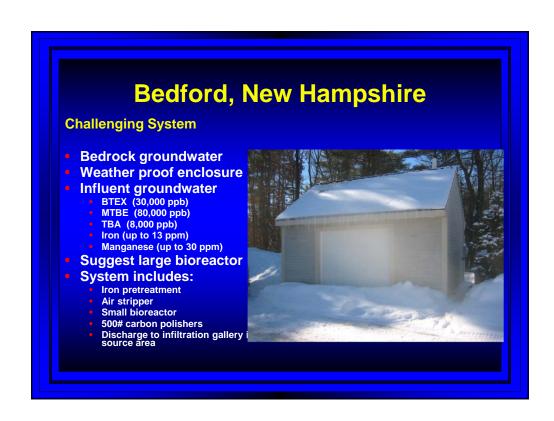
- Microbes at JWPCP Carson, CA 1997
- Scow Laboratories- UCD isolate PM-1 1998
 CA native
 - Very long doubling time
- UCD Civil Eng. Pilots 4-inch Trickling Bed Filter -1998
- ERI installs eight 16-inch TBFs at Healdsburg using cultures from Davis - 1999
- ERI pilots fluidized bed reactors using cultures from Davis and Healdsburg-1999
 - Six months to populate
- First full-scale fluidized bed in Palo Alto 2000
- ~30 other full-scale FBRs to date

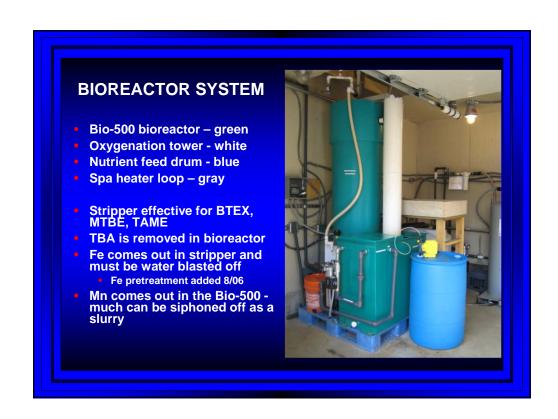




Page 4






		O Δ $I1$	O FIL	idized	d Red
Date	Flow	MTBE in	MTBE out	TBA in TBA	A out Method
	gpm	ppb	ppb	ppb p	opb
8/9/00	10	6,200	ND<2.5		
8/11/00	10	7,420	ND<0.5	ND<284 NE	0<20 (8260)
8/29/00	10	8,000	2,330	Nutrients Ne	eded (N, P, K)
9/19/00	10	7,600	ND<2.5		
9/22/00	12	13,700	30.6	Reactor Cap	acity Exceeded
				O ₂ Booster a	added
9/28/00	12	11,100	ND<1	_	0<3.9 (8260)
10/12/00	14	8,400	3.5		
10/26/00	17	9,670	6.1	ND<980 NE	0<3.9
11/9/00	17	12,000	ND<0.5	300 N	D<5 Kiff
11/21/00		5,300	1.2		D<5 Kiff

F	alc) Alt	o Flu	<u>idize</u>	ed E	sed
Date	Flow	MTBE in	MTBE out	TBA in	TBA out	Method
	gpm	ppb	ppb	ppb	ppb	
1/08/03	11	280	ND<0.5	1,600	ND<5	(8260B)
2/04/03	11	120	ND<0.5	1,100	ND<5	
3/05/03	11	77	ND<0.5	830	ND<5	
4/02/03	12	110	ND<0.5	670	ND<5	
5/08/03	9	49	ND<0.5	570	ND<5	
6/03/03	10	31	ND<0.5	360	ND<20	
7/15/03	12	29	ND<0.5	180	ND<20	
8/06/03	11	23	ND<0.5	150	ND<5	

	Bedford NH Data						
	Flow	Temperature	Bioreactor TBA (ug/l)				
Date	(gpm)	(degrees F)	Influent	Effluent			
<u>Notes</u>							
2/15/05	1.4	65	6,440	<20			
2/22/05	1.5	63	4,930	27			
2/28/05	1.4	65	5,820	<20			
3/7/05	1.4	80	6,320	<20			
3/14/05	0.5	77	3,570	<20			
4/5/05	0.9	72	2,770	<20			
5/2/05	8.0	67	4,230	<20			
6/28/05	1.5	81	1,230	<20			
7/19/05	2.0	86	608	<20			
7/20/05	1.0	79	574	<20			
8/12/05	2.0	76	<20	<20			
8/22/05	1.8	73	890	<20			
9/20/05	0.9	75	374	<20			

Bedford NH Data								
	Flow	Temperature	Bioreactor	TBA (ug/l)				
Date	(qpm)	(degrees F)	Influent	Effluent	Notes			
10/22/05	1.7	60	3,930	<20	Record rainfall; new wel			
11/4/05	4.9	54	7,210	4,030	on line; increase loading			
11/5/05	4.9	54	4,590	1,820	5-fold; decreased temp.			
11/28/05	4.9	56	1,940	540				
12/31/05	2.7	57	490	<20				
1/20/06	3.9	56	1,600	34				
2/13/06	3.3	51	1,480	<20				
3/13/06	4.3	55	245	<20				
4/14/06	4.4	57	276	<20				
5/19/06	2.2	65	70	<20				
6/5/06	4.6	59	185	<20				
6/26/06	5.8	64	912	<20	25% stripper bypass			
7/10/06	5.1	64	417	<20	50% stripper bypass			
7/21/06	4.5	65	258	<20	75% stripper bypass			
8/4/06	4.2	61	<160	<20	100% stripper bypass			
9/8/06	4.3	64	NA		100% stripper bypass			
10/16/06	4.3	61	<20		100% stripper bypass			
10/30/06	4.8	63	277	<20	100% stripper bypass			
12/11/06	4.1	59	140		100% stripper bypass			
1/29/07	4.9	57	<20		100% stripper bypass			
3/30/07	3.4	54	<20	<20	0% stripper bypass			

Date				tor BTEX (
	Influent	Effluent	Influent	Effluent	Notes
6/5/06	51	19	ND	ND	0% stripper bypass
6/26/06	530	46	663	ND	25% stripper bypass
7/10/06	>1,900	16	707	ND	50% stripper bypass
//21/06	2,990	29	579	ND	75% stripper bypass
3/4/06	2,410	42	562	ND	100% stripper bypass
9/8/06	NA	104	NA	ND	100% stripper bypass
0/16/06	1,340	414	922	ND	
0/30/06	>1,810	53	4,369	ND	100% stripper bypass
2/11/06	863	453	4,829	ND	100% stripper bypass
/29/07	562	543	3,912	265	100% stripper bypass
3/30/07	<2	<2	ND	ND	0% stripper bypass

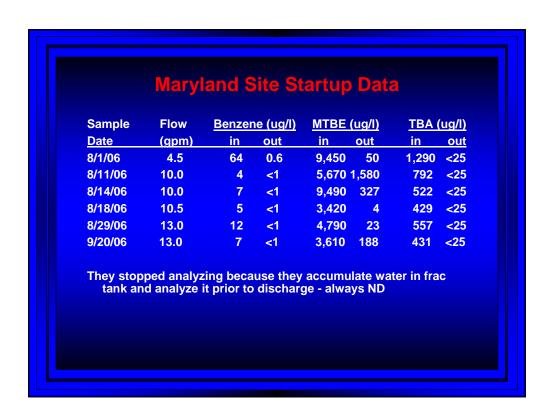
	Stripper	Bioreactor	Bioreactor
Date	Influent	Influent	Effluent
_		Manganese	
/14/05	13	12	<1
05/05	13	12	6.5
		Iron	
/14/05	13	4	<1
05/05	10	5	4
		Dissolved Oxyger	1
05/05		20	5

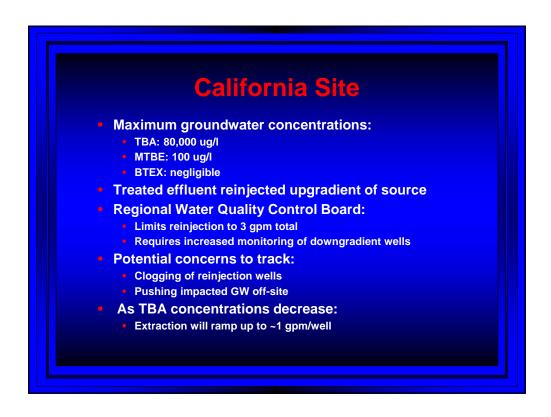
Bedford NH

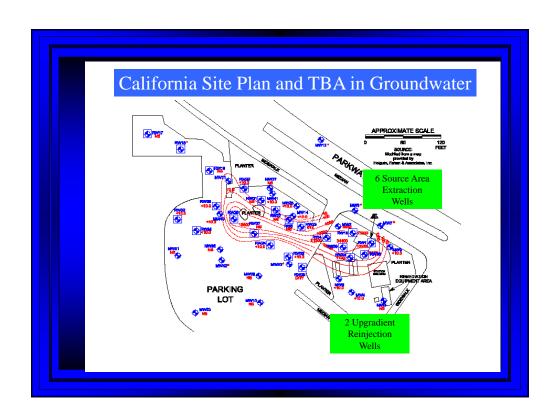
- Bioreactor effectively destroyed TBA to below standard (40 ug/l) except in 11/05 during period of:

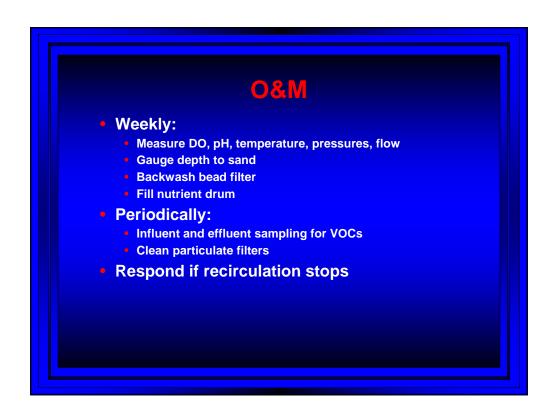
 Drastically increased TBA mass loading to bioreactor

 Decreased temperature


 - Malfunctioning iron/manganese pretreatment system
- Air stripper and GAC were bypassed until recently
 - Bioreactor can treat ethers, alcohols, aromatics
 - Effluent with oxygen and bugs discharged to groundwater to promote in situ bioremediation
- Dissolved oxygen concentrations up to 38 mg/l have been achieved by oxygen booster
- Water was heated initially but not this past winter
- MTBE and TBA concentrations in site GW are down; BTEX contamination remains
 - Oxygenated effluent is flushing smear zone at source


Maryland Site


- Larger bioreactor (ERI-4000)
- Incoming well water accumulated in fractanks
- Filtration to remove solids
- Treating BTEX, MTBE, TBA
- Carbon (3 plus spare) for final polish
- Final water accumulated for analysis
- Currently discharge effluent to surface water
- May reinject to groundwater in the future



California Site Startup Data								
	Flow		(ug/l)		(ug/l)			
Date	(gpm)	Influent	Effluent	Influent	Effluent	Notes		
01/04/07	0.00	<200	<10	3300	<1			
01/10/07	0.00	37000	ND	18	0.21			
01/16/07	0.03	47000	ND<10	38	ND<0.5			
01/23/07	0.06	43000	ND<10	ND<100	ND<1.0			
01/30/07	0.17	15000	ND<10	26	0.52			
02/06/07	0.36	69000	36000	260	88	Lost cire		
02/08/07	0.35	91000	920	250	13	Lost circ		
02/12/07	0.00	55000	1300	160	15	Lost circ		
02/13/07	0.00	NT	NT	NT	NT			
02/20/07	0.29	98000	18	130	3.1			
02/27/07	0.10	58000	ND	140	ND			
03/06/07	0.06	68000	ND	200	0.38			
03/16/07	0.12	43000	ND	150	1.2			

Bioreactor Sizing Based on loading of VOCs Standard Size FBR – 5' diameter x 11.5' tall On 6' x 10' skid Design loading = 100,000 ppb-gpm Or with O₂ booster = 250,000 ppb-gpm Small Size FBR – 2' diameter x 11.5' tall On 4' x 4' skid Design loading = 20,000 ppb-gpm Or with O₂ booster = 40,000 ppb-gpm

Startup Initial startup phase - ERI will: Add the biomass and start up the bioreactor Operate the bioreactor during initial startup phase Train site personnel on O&M First several months of operation - ERI will: Review site O&M data Advise on optimizing bioreactor performance

ERI-4000 Costs Capital Costs Bioreactor/biomass purchase \$65,000 \$3,500 Oxygen booster (optional) Transport/install/startup and site-specific GAC/pumps/tanks/piping/elec. **O&M Costs** On-site labor 2-3 hr/wk **Electricity for bioreactor only** 1.5 KW Materials/chemicals/parts/ \$200/month sludge disposal

ERI-500 Costs Capital Costs Bioreactor/biomass purchase \$35,000 Oxygen booster (optional) \$3,500 Transport/install/startup and site-specific GAC/pumps/tanks/piping/elec. **O&M Costs On-site labor** 1.5-2.5 hr/wk **Electricity for bioreactor only** 0.9 KW Materials/chemicals/parts/ \$100/month sludge disposal

Comparison with Other Technologies AS/SVE slightly effective for MTBE and ineffective for TBA MTBE - medium to high concentrations Competitive with GAC Competitive with chemical oxidation Competitive with air stripping w/vapor-phase treatment Not competitive with air stripping w/no vapor-phase treatment Competitive with bioGAC – FBR advantages: Can handle higher concentrations More reliable and controllable Less clogging problems Don't need H₂O₂ – safety issues TBA – medium to high concentrations Hard to separate TBA from water Cost-effective technologies limited to biodegradation and chemical oxidation Major advantage over chemical oxidation Hazardous chemicals not used (e.g., H₂O₂, O₃)

Conclusions

- Contaminant destruction alcohols, ethers, aromatics
- Low effluent concentrations can use oxygenated effluent containing bacteria to promote in situ bio

 Discharge effluent back to groundwater
- **Hydraulic control possible**
- Good performance at cool temperatures
- Can tolerate high manganese concentrations
- Small volumes of wastes generated
- Bioreactor can be reused at next site